

Current Transducer HAS 200 .. 300-S/SP1

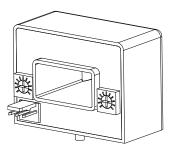
For the electronic measurement of currents: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

Electrical data

	Туре	Primary nominal rms current	Primary current, measuring range	RoHS since date code
		$I_{PN}(A)$	$I_{\rm PM}$ (A)	date code
	HAS 200-S/SP1	200	±600	77114
	HAS 300-S/SP1	300	±900	77320
$U_{\rm c}$	Supply voltage (±5 %)		+5	V
	Current consumption		+12	mA
$I_{_{ m C}}$ $R_{_{ m IS}}$	Insulation resistance @	ᡚ 500 V DC	>10	00 MΩ
V_{out}	Output voltage @ $\pm I_{PN}$	$R_{L} = 10 \text{ k}\Omega, T_{A} =$	25 °C	2±0.5 V
R_{out}	Output internal resista	nce appro	ox 100	Ω
R_{L}	Load resistance 3)		>1	kΩ

Accuracy - Dynamic performance data

$oldsymbol{\mathcal{X}}{oldsymbol{arepsilon}_{L}}{oldsymbol{V}_{OE}}$	Accuracy @ $I_{\rm PN}$, $T_{\rm A}$ = 25 °C (excluding offset) Linearity error ¹⁾ (0 $\pm I_{\rm PN}$) Electrical offset voltage, $T_{\rm A}$ = 25 °C	<±2 <±1 <i>U</i> _c /2±10	$\%$ of $I_{\rm PN}$ $\%$ of $I_{\rm PN}$ $$ mV
$V_{_{ m OH}}$	Hystersis offset voltage @ I_P = 0, after an excursion of 1 × I_{PN}	<±10	mV
$V_{_{\mathrm{O}T}}$	Temperature variation of V_{\odot}	<±1	mV/K
$TC\varepsilon_{G}$	Temperature variation of the gain (% of reading)	<±0.1	%/K
$t_{\rm r}$	Step response time to 90 % of $I_{\rm PN}$	<5	μs
di/dt	di/dt accurately followed	>50	A/µs
BW	Frequency bandwidth 2) (-3 dB)	DC 50	kHz


General data

T _A T _S m	Ambient operating temperature Ambient storage temperature Mass Standards	approx	-10 +80 -25 +85 60 EN 50178: 1997	°C °C g
			UL 508: 2010	

Notes: 1) Linearity data exclude the electrical offset

- ²⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency
- $^{3)}$ If the customer uses 1 k Ω of the load resistor, the primary current has to be limited as the nominal. To measure the full defined measuring range, the load resistor should be at minimum 10 k Ω .

$I_{_{\mathrm{DN}}}$ = 200 .. 300 A

Features

- Hall effect measuring principle
- · Insulating plastic case made of polycarbonate PBT recognized according to UL 94-V0.

Special feature

• Single power supply +5 V.

Advantages

- Easy mounting
- Small size and space saving
- Low power consumption
- · Only one design for wide current ratings range
- High immunity to external interference.

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- · Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

Current Transducer HAS 200 .. 300-S/SP1

Insulation coordination			
$U_{_{\mathrm{d}}}$	Rms voltage for AC insulation test, 50 Hz/1 min	3.6	kV
$\hat{U}_{\scriptscriptstyle \mathrm{W}}^{\scriptscriptstyle \mathrm{u}}$	Impulse withstand voltage 1.2/50 μs	>6.6	kV
**		Min	
d_{Cn}	Creepage distance	7.08	mm
$oldsymbol{d}_{ extsf{Cp}} \ oldsymbol{d}_{ extsf{Cl}}$	Clearance	6.23	mm
CTI	Comparative tracking index (group IIIa)	275	

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
$d_{ extsf{Cp}},d_{ extsf{Cl}},\hat{U}_{ extsf{W}}$	Rated insulation voltage	Nominal voltage
Basic insulation	600 V	600 V
Reinforced insulation	300 V	300 V

Safety

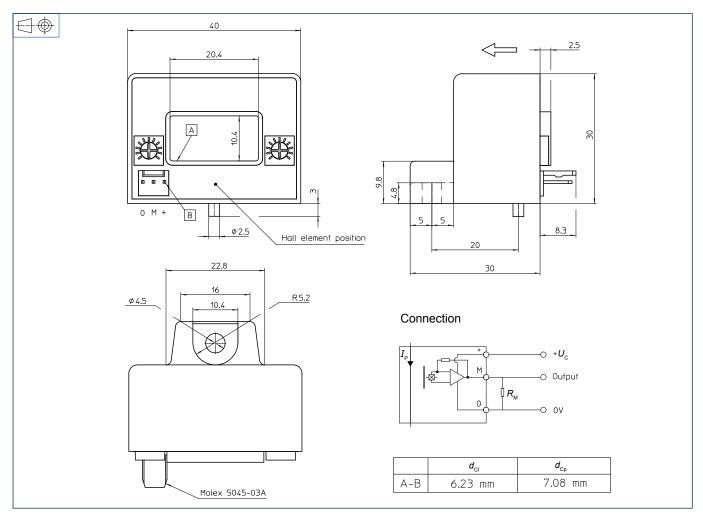
This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions HAS 200 .. 300-S/SP1 (in mm)

Mechanical characteristics

General tolerance

Transducer fastening

Recommended fastening torque 0.75 N·m (±10 %)

· Connection of secondary

±0.5 mm

1 hole ø 4.5 mm 1 M4 steel screw

Molex 5045-03A

Remarks

- $\bullet \ \ V_{\rm out}$ is positive when $I_{\rm P}$ flows in the direction of the arrow.
- · Temperature of the primary conductor should not exceed 100 °C.
- · Installation of the transducer must be done unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: **Products/Product Documentation**
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.